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Evolution of Langmuir waves in a plasma contaminated by variable-charge impurities
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The propagation of Langmuir waves in nonisothermal plasmas contaminated by fine dust particles with
variable charge is investigated for a self-consistent closed system. Dust charge relaxation, ionization, recom-
bination, and collisional dissipation are taken into account. It is shown that the otherwise unstable coupling of
the Langmuir and dust-charge relaxation modes becomes stable and the Langmuir waves are frequency down-
shifted.[S1063-651X98)08612-7

PACS numbdrs): 52.25.Vy, 52.35.Fp, 52.25.Kn

Charged impurities or dust grains are often found in spacé¢hat these dissipative processes lead to a net damping of the
and laboratory plasmdd,2]. The highly charged dust par- Langmuir waves in typical dusty plasma systems.
ticles can significantly affect the system since they carry a We consider the propagation of linear Langmuir waves in
considerable percentage of the total negative charge of th& nonisothermal T.>T;, whereT, andT; are the electron
plasma. In fact, most plasma waves are to some degree a@nd ion temperaturgplasma. The size of the dust grains is
fected by the dust8—7]. The variable dust charge also leads @ssumed to be much less than the intergrain distance, the
to a new plasma mode, usually referred to as the Charg@Iectron Debye radius, and the wavelength of the waves, so
relaxation mode(CRM), involving dust-charge fluctuations they can be treated as heavy point masses. The charge of a
[3,8] originating from the dust-charge variation determinegdust grain va_rles_because of_ the microscopic electron_and_lon
by the instantaneous local electrostatic potential. In most eafH€Nts flowing into the grain according to the potential dif-
lier investigations on waves in dusty plasmas, the fact th ek:ené:e between the ddUSt su_rface be}lndbthekadjacgnt_plasrrr:a.
dusty plasma models are almost always thermodynamicallﬁ e dusts are treated as an immobile background since the

) . . e me scale of charge variation is much smaller than that of
open was sidestepped by invoking unspecified sources e dust motior8]

sinks, whose details are nevertheless important for a rigorous The equations describing the propagation of Langmuir
treatment of the problem.

S N . waves are
In the absence of ionization, recombination, and colli-
sional dissipation, it was found}] that Langmuir waves can N+ V- (Ngve) =S, 1)
be unstable because of a coupling to the CRM. In this Brief
Report we reconsider the problem of linear Langmuir wave Vet veVe=(€/Me) Vo — YW2.VNe/Nge, 2
propagation in a nonisothermal dusty plasma with dust-
charge variation as well as the collisional effects. The latter V2p=—4me(Zinj—Ne—Zgny), (©)]

may be due to collisions between electrons and ions, neutral

atoms, or other electrons, as well as the elastic and inelasti¥here ¢ is the electrostatic potential amd;, n; (including
(the dust-chargingcollisions between the electrons and the the stationary valuay;), andv; are the mass, density, and
dust. These processes exist in most dusty plasmas, which dieid velocity of the specieg=e, i, andd for electron, ion,
usually of low temperature and partially ionized. In fact, the@nd dust, respectively. Furthermo&e and —Zge are the
dust-charge relaxation process is itself closely associatef@r9€s of the ions and dust)s,lflzthe adiabatic constant of
with ionization and recombination, which maintain the aver-1"¢ €lectrons, an/e=(T./m)"* is the electron them21al
aged background particle number densities self-consistentl\{/eloc'tg" We have also defined=—wvednet vine—pn;
during the perturbations by acting as sources and sinks. They BsiNe* V- (DaVne), whereveq is the collection rate of

also define the equilibrium or steady state. Here we showl@sma electrons by the dust graimsjs the ionization rate,
B is the volume recombination ratBy; is the stepwise ion-

ization rate, andD, is the ambipolar diffusion coefficient.
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In the absence of the perturbations, the system is quasiamely, that of a density-fluctuation independent ionization
neutral so thatZ;n;p=ng+2Zyngo. The dust-charge relax- rate, with §&,=0, and that of density-fluctuation-dependent
ation process is described by the charge balance eqU&fion ionization rate, withé;=1.
From Eq.(3) one can easily obtain the perturbed electron
didg=1e(dqg) +1i(da), (4)  densityny = — (1/4me)k?p+ Zg1Ngo. Thus we have for the

) ) grain charge and electron density variations
whereqy is the average charge on the dust grain kfdy)

andli(qy) are the electron and ion grain currents flowing Qa1 =1K?|l e plAmeng(w+ivh) 9
into the grain surface. The quantitigg, 1., andl; involve
both steady-state and perturbed components, dgs94  and
+0qg1, le=legt le1, @andl;=Ijp+1;1, where _
Ne1=V(eqV @)ldme, (10
leo=— ma%e(8Te/mme) Y nepexded gy /Tel,  (5)
where vi=vet v, v=ngo|leo|/Nece, and eg=1—iv/(w
lio=ma’eZ(8T;/mm) nig[1—eAey/T] ()  +iu%). Furthermore, from Eq8) we have

are the steady-state electron and ion currents at the grain Ney |
surface andjyo=CA ¢ is the stationary charge of the grain. - 7]
Herea (<rp,) is the grain radius;p, is the electron Debye &0

radius,C=a(1+alrpe) is the effective grain capacitance, \ypere 7= 0—ivegt+iExvi— YKAVEJ(w+iver) and &,=2
andA ¢,= ¢4~ ¢ is the steady-state potential difference be- _ ¢,. Finally, equating Eqs(11) [after substituting oZy,

tween the grain and the adjacent plasma. The floating potefzom gq. (9)] and (10), we obtain the dispersion relation of
tial ¢o is determined by equating the equilibrium electron o Langmuir waves

and ion current$5) and(6).
For Langmuir waves, we can negldgt with respect to

iek?e

Mo(w+iveg) |’ (1D

—(9z4ved) 74 Za1 T

~w+iv n
I o1 Since it is on the slower ion time scale. From E@s—(6) D(w,k)=iv—— M p+i —eo(ﬁzdved)zdo . (12
we obtain for the perturbed dust charge o+live, Ndo
diGg1+ Verbdar= — |l eo| Ne1/Neo (7)  whereD(w,K)=(w+ivey) n— wge and wy, is the electron

plasma frequency. This is the equation describing the linear
where vey=aw?.A/2mVy; is the charging rate of the dust coupling of the high-frequency Langmuir plasma waves with
particle[8], defined by the equilibrium electron and ion mi- the CRM modew= —iv(,. It can be solved numerically for
croscopic current$5) and (6). Here V+; is the ion thermal any given set of parameters. We also note thati\f vgh,
velocity, 7=T;/Te, A=1+71+2Z, and Z=Z4e*/aT,. The 1.4, and (Oz,ved)z,, are set to zero in Eq12), one recovers
effective charging rate i$§h= veP(4+ 2)(7+ 2)[AZ and  the coupling equation of Ref4].
the electron capture rate at the grain surfacg8i®] veq It is instructive to estimate the effect of electron capture
=veP(7+ 2)|AZ, P=2Zy4ngo/neo. The frequency of elastic (by the dust grain and dissipative collisions on the
electron-dust collisions i§9] v&'=4\27Z3nse*A/3m2Vv3,,  Langmuir waves. For this purpose it is convenient to make
where A =In(rpe/a) is the Coulomb logarithm. The expres- the ansatz w> veg,veqy, vap. Setting w=w,+81+i157,

sions for the ratev, of electron collisions as well as far,,  wherew;= w§e+ yk2V2,, we find from Eq.(12)
B, Bsi, andD, can be found in Ref.10]. Equations(1)—(3)
and (7) describe the coupling between the high-frequency 5&:_(0)’2397,0)%_5)7,/2“,11 (13)

electrostatic Langmuir waves and the CRM.
To determine the stationary electron plasma density wgyhere 3= a3niow’2)i,4/,,ch and
assume that the pressure is not too low, such that recombi-
nation losses prevail over diffusion losses. The last ter@ in 258)= w’;‘e;/wi_ Vei— EoVi+ Vgt vvepBlw?,  (14)
can then be ignored. We then obtain from EL.the lowest-
order (steady-state electron plasma densityneg=(7;  so that the frequency of the Langmuir waves is down shifted
— ved)/ Bett, Where Ber=B— Bsi- We note that the ioniza- and the waves are damped by most of the collisional pro-
tion rate must be high enough such that-ve4; otherwise cesses included here. In the absence of the latter, the first

no self-consistent stationary state exists. term in Eq.(14) remains and it leads to the Langmuir wave
Linearizing with respect to the wave perturbations, weinstability discussed earliefd]. Although the ratevoy of
obtain from Eq.(2) electron capture by the dust also has a positive sign, it is
always smaller than the term &,v; involving ionization be-
IiNe1 T NeoV - Vo=~ Ved 7, Net. causer;>rqq (required by the existence condition for the
(8) stationary stateand £,>1.
—Neo(Iz,Ved 2y, Zd1~ 2BetNeoNer + 17iNes For the CRM, we sebb= —iv},+id8,. From Eq.(12) one

then obtains
whereng; andZy, are the perturbations of the electron den-
sity and dust charge, respectively, aéd depends on the 52w2/7»=3k2V$e+(v§h— Veit) (Vint E2vi— Veq— B),
model for direct ionization. We shall consider two models, (15
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which shows that the dust charging rate is slightly reducediecrease off, would lead to a decrease of the ionization

by the coupling with Langmuir waves. frequency and hence a violation of the existence condition
We now estimate the average dust charge and the disdier the stationary state. We note th‘Ei"es depends weakly

plasmas. The factoeA¢y/T,, which defines the average the degree of ionizatiotan increase ofi;;/N,, would lead to

charge on a dust grain and can strongly affect the densit§ downshift of T¢"®9, the dust size and chargd{"** in-
ratio nqo/Neo through the quasineutrality condition, can be creases witla andZg), and the number of electrons in the
found from the condition of zero total current flowing into System Tg"®increases wheme,/n;o decreases It should
the dust in the absence of the high-frequency perturbation®e pointed out that in using the expressid®.9 of Ref.
For a typical dusty argon plasma, we halig~10 eV, T;  [11], one should check the relation betwe®p and U
~1 eV, r~5 um, ngp~5%x10° cm 3, and n;g/ne=10. =(2/3)(U;—U,), whereU, is the energy of the first ex-
One then obtainseA¢y/Te=—1.71, Zgpo=—6.12X10% cited level. For electron temperatures exceeding, multi-
and Nyg/Neg~1.74X 10—‘?_ One can also show that the in- Step ionization dominates and the tedmin the exponent of
equality v<w, Where v= vy, veq, v, » represents the dis- Eq. (16) must be replaced by the lower valuéd . In this

sipative effects invoked here, is satisfied. In fact, we findcaf’je rt]he di_rect-ioniﬁatioQ ﬁjpproxit:nation_ Is no longer vali%
T (3% 10) - (5% 10F) sec ! and w100 sec?, which & the existence threshold for the stationary state may be

validate our ansatz lowered. For argon plasmas the corresponding expressions
; ) . . . for the ionization frequencies are more complicated, but the
It is also necessary to verify the existence conditign

; . o . exponential dependence onU, ;)/Te remains the same
> veq fOr the stationary state with the equilibrium density [10]. Thus for argon plasmas similar results can be expected.
Neo= (v — veg)/ Beii- TO €Stimate the ionization frequeney

th i10.9 of Ref. [11] for the ionizati In conclusion, we have shown that if ionization, recombi-
we use the expressid0.9 o € L . | or (€ 10n1zallon — ation, and other collisions are included, the linear coupling
rate (averaged over a Maxwellian distributipkioiowe) in

. A ) of the CRM and Langmuir waves leads to a damping and a
hydrogen, whererio, is the ionization crosssection. ACCord- e qency downshift of the waves. This result differs consid-

ingly, we have erably from that where a uniform source is invoked to re-
2% 10N T U place the electrons and ions lost to dust chardiflg Thus
-7 n /e _ i the actual ionization and recombination processes that main-
V= ex , (16) p
6.0+ Tc/U; VU, Te tain the total charge balance of a dusty plasma system may

be important in investigations of instabilities in dusty plas-

where U; is the ionization energy andll, is the number mas

density(in cm™3) of the neutral particles. We see thatis
sensitive to the electron temperature. The threshold tempera- K.N.O. and S.V.V. are grateful to the Alexander von
ture T™"**may be estimated by setting= v.4. For the typi-  Humboldt Foundation for financial support. This work was
cal hydrogen plasma parameterg~10'° cm 3, N,~ 10 supported by the Sonderforschungsbereich 191 Niedertem-
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